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Chapter 4

Statistical Characteristics of MST Radar Echoes and its

Interpretation _
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Jicamarca Radio Observatory
Instituto Geoffsico del Pen3

Introduction

As we shall see later, radar backscattedng is produced by fluctuations in

the refractive index of the illuminated medium with scale sizes equal to 1/2 the

wave length of the electromagnetic probing wave. The fluctuations are a random

process, and so are, consequently,-the signals received by the radar. Both have

to be characterized statistically. The power of the technique is based on the fact

that the statistical parameters that define the signal received are related to the

statistical parameters of the medium. This allows us to remote-sense the

medium from the ground.

It is important, then, in order to understand the technique, to know the

statistical ways of characterizing 1) the fluctuations in refractive index and 2)

signals received. The second may be familiar to many of you. The first may not.

The second is easier to understand since it is a one dimensional process (time).

The first is harder, since involves processes in four dimensions, 3 in space, and !

in time; on the other hand, it uses extensions of concepts developed originally

for one dimension, and should present no difficulties if these one dimensional

concepts are understood.

Fluctuations in index of refraction come about mainly, as a consequence of

atmospheric turbulence. If we are going to use these fluctuations to study the

atmosphere, it is important, in order to interpret the signals received, that we

understand some of the fundamental concepts related to atmospheric turbulence.

Because of above reasons, we have decided before entering on the main

subject of our lecture, that of the characterization of radar echoes and its
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interpretation, to review some fundamental concepts in random process statistics

and in atmospheric turbulence.

Some statistical _concepts

There are two concepts of fundamental importance which should be

reviewed: Autocorrelation Function and Frequency Power Spectrum. They are

interrelated. One can be defined in terms of the other. Mathematically it is much

simpler to define the first, although many find easier to grasp the physical

significance of the second.

Given a time series, either as a sequence of numbers in time s,s2s_..s,.., or

as a random function of time, s(t), (We will use s(t) for both cases for

convenience, unless we want to stress the discrete nature of a sequence ), its

autocorrelation function is defined as:

p(x)= E[s(t),s(t+x)] (1)

where E[ ] stands for the expectation of its argument. Good estimators of this

expectation are:

T

p'(x)= s(t)s(t+¢) , (2)

if the process is stationary ,or, under more general conditions,

p'(x)= <s(t)s(t+x)>,. (3)

The overbar stands for a time average of duration T, and the brackets

stand for averaging over n identical experiments or observations.

The second estimator allows us to evaluate correlation functions even in

the case the process is not stationary. When the process is not stationary, we

should write p(x; t) , to stress the dependence on t, the time at which the

correlation is evaluated.

Let us see what a correlation function means physically. Let us take

equation (2) as a good definition (it is, for all practical purposes, if the time T

taken for the average is long enough ). Fig. 1 show a sample function of the
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random functions s(t),s(t+_) and s(t)s(t+_) for three displacements, t--0, _ "small"

and ,c= "large". When _0, we get s(t) = for the product function, the integral of

which corresponds to an estimation of the power of the process, which we use as

a reference.

If we increase t by small amount, s(t)s(t+_) does not vary much from the

_=0 case, and the integral is slightly smaller than the power . If _ is large

enough, it is equally probable for the product to be positive or negative, and the

integral is zero.

But, what is small enough and what is large enough? The answer is

given by autocorrelation function itself. Note that, between the two _'s depicted in

figure 1, there should be a _, _, at which the correlation is equal to 0.Sp(0) and

that the correlation function decays from its maximum value to zero in a

characteristic time, _:. This characteristic time or, alternatively, one derived from

the normalized second moment of p(_), has a ready interpretation and gives us

an idea of how fast the process varies. It can be centuries (changes in the

global temperature of the earth) or hours (changes in the ambient temperature)

or, seconds (changes in the punctual temperature of a turbulent process) or any

other time scale. This is the most usual interpretation given to the correlation

function. There is more information , of course, besides the power and the

characteristic time of the process in the functional shape of the correlation

function; for instance, if the shape is oscillatory it tells us that the process is

quasi-sinusoidal with a period given by the period of the oscillations.

Nevertheless, in many cases, it is sufficient to give only this simple interpretation.

Power spectrum - when defined carefully (e.g. Papoulis,1965)- is defined

as the Fourier Transform of p(_), namely

F(o)) = 1/2_/_.p(_) exp(-j(_) d_ (4)

This is is a modern definition. The earlier definition and, in any case, a

good interpretative way of looking at it, is that the power spectrum, F(o)),

measures the power density of a process at different frequencies. This means
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that, if the process is fed to a bank of filters centered at frequency co_, The

average power of each filter would be proportional to F(coj), where o_ is the

center frequency of the filter. There are many estimators of F((o) which conform
to this definition. For instance

F'((o)= <II/T/-f(t) exp(-j(ot)dtl=>, (5)

This is equivalent to getting the Fourier transform of a subset of the

sequence, obtain its power (square it) and average many sub-sequences.

Extension to 3-D and time processes

A good example of a three space dimensions and time random process is

the temperature or the velocity of a boiling pan of water, or any other turbulent

process. These processes are also characterized by its autocorrelation function,

p(r,t). It is defined in a fashion similar to its one dimensional case. For

instance, if we take n to stand for the deviations in density, or the refractive index

of a medium, its autocorrelation function is defined as :

p(r,_) = E[n(x,t)n(x+r,t+'¢)] (6)

That is, it is the expectation (in practice,the average) of the product of the

density at point x at time t, multiplied by the density at a point displaced r from

x, at a time t units later. If the medium is stationary and homogeneous p does

not depend on x or t. Otherwise, we should write p(r,¢;x,t), since the

autocorrelation would be different if measured in a different place or at different

time.

As in the case of one dimension, there is a characteristic length, re, and a

characteristic time, %, much beyond which the autocorrelation is small or zero. If

the medium is isotropic, the characteristic length is the same , regardless of the

direction of the displacement, r. in this case we can use the magnitude , r,

instead of the vector, r. If the medium is anisotropic, there can be as many as

three characteristic lengths, one in each major axis direction.

As in the case of onedimension, the characteristic time gives us an idea of
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how long we have to wait before the three dimensional structure of a sample

process changes significantly. Similarly, the characteristic scale gives us an idea

of how far we have to move from a specific point, from which we have taken a

snap shot at the process for a second snap shot, taken at the same instant, to

differ significantly and yet show some resemblance. The directions of

displacement should preferably be taken along the three major axis of the

correlation function.

To envision the meaning of statistical anisotropy, let us consider the two

dimensional case of the vertical displacement of the surface of a choppy ocean

produced by a wind of constant direction. Here, there would be a tendency for the

waves, or even swell, to form in with preference in one direction, that of the wind.

If we displace ourselves along the crests of the waves, we have to move much

further for observational snapshots to look different than if we displace ourselves

along the direction of propagation of the waves (direction of the wind). The

characteristic lengths in this case are different, being shorter along the direction of
the wind.

Again, for the purpose of an introductory interpretation, we have talked

about a single parameter per dimension. This is over simplified. One or few

parameters does not replace the whole correlation function unless we accompany

it with knowledge of its functional shape (e.g. Gaussian, Lorentian, sinusoidal,

exponential,etc.), or by a sufficient number of evaluated points.

There is also a counterpart in 3-D processes to the concept of frequency

power spectrum. In this case we speak of wave-number-vector (extension of

wave-number) power spectrum, or k-spectrum.. In an analogous fashion, we

define it as the 3-D spatial Fourier transform of the space-time autocorrelation

function, p(r,_), specifically,

_(k) =1/(2x)'/'. p(r,O) exp(-jk.r) d'r (7)

Note that we have set ¢ equal to zero. Therefore in this definition, we are

performing the displacements in space at the same instant of time, i.e. no time

dynamics is included. We could also have used p(r) as a symbol for the same

concept. Again, its interpretation is similar to the frequency power spectrum. We

can interpret _(k) as a function which describes the "power" density of the

different wave number components of the process. We imagine the process to

result from the ( Fourier ) superposition of different spatial waves with different



120

directions and wavelengths , each with a power ( amplitude squared) given by

_(k).

There is an important concept in talking about the directional scattering

properties of a medium. One talks about the aspect sensitivity of the scatterers. It

is a consequence of the anisotropic character of the _(k) which characterizes

anisotropic turbulent fluctuations. This anisotropy is sometimes better perceived

from the shape of the autocorrelation function, p(r). In this regard it should be

kept in mind that, in any Fourier pair, like Op(k)and p(r), wide functions transform

into narrow functions and viceversa. This means that if we have a horizontal,

pancake-like spatial autocorrelation function, it transforms into a vertical pencil-

like k-spectrum.

We can relax, above, the restriction for _ to be zero. We would obtain a

function, _(k,_), which associates certain dynamics to each spatial wave

component. Each component will have a characteristic time associated to its life

time. This does not mean that the process no longer has power at that particular

wave-number vector, but rather that wave component is completely independent

of the one observed a few characteristic times ,_c,ago.

To further complicate matters, we can perform an additional Fourier

transformation in time on p. We would obtain

O(k,co) = (1/2=)'f-p(r, =)exp(-jk.r-}h,-_) d'rdt . (8)

In this case the dynamics of the process, for each wave-number vector, k, is

represented by a superposition of temporal oscillations with frequency co, and

power density c_(k,(o).

We are not presenting this concepts for purely academical reasons. As we

shall see later, the signal statistics of the echoes recei_/ed in a MST radar are

directly related to the spectrum $,(l_,t) (or _,(k,,co) ) which characterizes the

density fluctuations of the medium. Although here, k, is no longer a variable but

an specific wave-number vector determined by the frequency and geometry of

the radar. We should, then, be familiar not only with the mathematical definition of

these concepts, but with their physical significance as well. Only then we can

attribute physical significance to the results of a MST radar experiment.

We have used the terms stationary and homogeneous. In the theory of

random process, they are defined as follows. A process is said to be stationary, if

the expectation of any function of its value, or values ( for instance E[s(t)] and
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E[s(t)s(t+'¢)] ), is independent of the time of the sample function taken, it is said

to be homogeneous, if the expectation is independent of where the values of the

sample function are taken.

In the exact context of this definition, the time and physical space have to

be infinite in extend. In practice one uses the concept of quasi-stationarity and

quasi-homogeneity, in which the "any time" or "any point" implicit in the strict

definition is replaced by finite intervals of time and finite regions of space,

sufficiently large as to contain a large number of charactedstic times and length

scales. The assumption of stationadty or homogeneity is considered to be valid if

they hold within a particular observation time or region.

For further reading see Papoulis (1965) and Tatarsky (1961).

Some turbulence concepts:

The MST radar depends on turbulence to obtain echoes from the clear

atmosphere. It uses turbulence as a tracer of the dynamics of the background

atmosphere. Also, since the statistical parameters of the received signal depend

on the statistical parameters of the refractive index fluctuations -produced by

turbulence--, the radar can also be used to study the turbulence process proper.

It is important, then, to understand some of the basics of atmospheric turbulence.

We would like to underline "basics" since turbulence theory is a difficult

subject. In fact, as a consequence of its highly non linear behavior, and in spite

of all the advances in its mathematical description, we are still not able to predict

its behavior, even in a statistical sense.

The meaning of turbulence varies from a general dictionary type definition

to controversial and more limited definitions. For us, it suffices to define it as the

state of a fluid in which the velocity field is rotational and random in three

dimensions and time.

Although some atmospheric physicists envision the existence of two

(space) dimensional turbulence in the atmosphere, we will use the term only in a

three dimensional context. We are interested in 3-D turbulence with length

scales no larger than about a few hundreds of meters in the stratosphere and

stable troposphere (non-convective) and a few hundred to slightly above a

thousand meters in the mesosphere. We are also occasionally interested in the

small scales (meters to hundred of meters) as well as the larger ( kilometers )
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scales of tropospheric convectional turbulence.

For turbulence to exist we need a fluctuating velocity field. Radars, on the

other hand, are sensitive to fluctuations in refractive index or, equivalently,

fluctuations in density or temperature at constant pressure. Fortunately, in most

cases, velocity fluctuations bring about density fluctuations, although this is not

always the case.
if we consider a non stratified atmosphere (no gravity) at constant

pressure, velocity fluctuations would not produce density fluctuations. Different

parcels of air would interchange positions, but since they have the same density,

no fluctuations would be produced. But, if a gradient of density exist, for any

reason, then, regions of higher density would be brought to regions with lower

density and viceversa, producing fluctuations in density and hence in refractive
index.

If we steer pure water, for instance, we could not perceive optically any

change, but if we mix it with clear syrup, it would produce a whitish fluid (while

the emulsion last) as a consequence of the light scattering the small scale

fluctuations in refractive index are capable to produce.

Mixing in a gravitational stratified atmosphere is slightly more complicated.

We have to introduce in this case the concept of "potentialdensity" and "potential

temperature".
Let us consider a medium with a constant temperature profile. Under the

influence of gravity it would have a density like n = exp(-z/H). If we interchange

two parcels of different altitudes adiabatically and in pressure equilibrium, we

would cool by decompression the parcel moving up into a lower pressure, and

heat the parcel moving down into higher pressure. So, if we steer locally an

atmosphere with a constant temperature profile, we end up with fluctuations in

temperature, apparently contradicting ourselves. It is more convenient -

conceptually and mathematically - to characterize, instead, the state of the

medium by the temperature it would have if it were to be brought to sea level

adiabatically. This "temperature" is called potential temperature. It is a conserved

property of the medium, i.e. it does not change as it is moved adiabatically to

other altitudes. In the language of turbulence theory it is said that it behaves as

a passive scalar. We can define a potential density in a similar fashion.

For turbulence to produce fluctuations in density or temperature we need a

gradient in potential density. Constant potential density backgrounds do not

produce fluctuations. When an atmosphere has such profile, we say that the
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(actual) temperature has an adiabatic lapse rate (about 1 every 100 meters).

The stratosphere has either a constant or positive gradient temperature profile,

hence it deviates more from an adiabatic lapse rate than the troposphere. It is

potentially capable, then, to produce larger fluctuations for the same mixed layer

thickness than the troposphere.

In the mesosphere the refractive index is produced by the density of free

electrons. The gradient of both potential and real electron density gradient is

positive and hence capable of producing refractive index fluctuations when mixed

by turbulence.

Assuming an initial gradient in a passive scalar, one can derive (e.g.

Tatarsky,1961) a quantitative formula relating the standard deviation of the scalar

(like potential temperature or potential refractive index) in terms of the original

gradient and the depth of the turbulent mixing layer thickness. Assuming further

a Kolmogorov power spectrum density law (see below), that is a dependence of

on k of the form k-'1_ He derived and expression for the standard deviation of

the fluctuations of the form

¢,(k)= a 0.033Lo_ (grad n)'k-'_ (9)

As expected the fluctuation density at any wavelength is directly

proportional to positive powers of the original gradient and the scale of the largest

mixing eddy, _. "a" is a constant of order unity.

We can also estimate roughly the vadance on the velocity field in the

following way. If we mix a (stable) gradient in potential density we produce work,

since we are moving up potentially heavier and down potentially lighter parcels of

air. We need then an energy source. This source comes from shear. Without

shear, there is no source and no turbulence. The original shear after turbulence

is reduced to very low value due to turbulent viscosity. The excess of kinetic

energy resultant from the difference in velocity of the originally shear profile and

the new constant velocity profile (see fig. 2) has to go into potential energy, result

of the work we mention earlier, and the random turbulent kinetic energy. It we

assume equipartition of the energy derived from the shear into 4 parts, 3 for the 3

different orthogonal components of the turbulent velocity (<u'Z>, <v'=>, <w'=> ) and

one for the potential energy, and _ve further assume a normal distribution of

velocities, we can derive that the variance of any of the velocity components

would be approximately (Woodman and Guillen, 1974; Sato and Woodman, 1982):
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Figure 2 - Schematic profile of the turbulent fluctuating component, u, and

its relationship to Av, the shear component that is randomized by
turbulence
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<u'_ = 1/48(Av)I (I0)

where Av isthe differenceinvelocitiesbetween thetop and bottomofthe layered

regionthatwent turbulenti.e.

<u% = 1/48(% dv/dz)' (II)

A normal distribution of velocities is a fair assumption, since it parcel of

fluid is influenced by the superposition in space and time ( velocity is the integral

of force) of many independent forces and the limit theorem applies. This is an

important additional statistical property of the medium with consequences in the

shape of the correlation and spectrum of the signal.

A related subject to that of equations (10) and (11) is that of Richardson's

criteria for stability. It says that a layer is unstable if

Ri - (g d/dz In6)/ (dv/dz) 2< I/4 (12)

The criteria can be interpreted as a condition for turbulence to be energetically

possible, namely the available kinetic energy in the shear has to be 4 times larger

than the gain in potential energy after the mixing. This is in agrement with above

arguments.
Some of these criteria can be used to extract hidden information from MST

radar experiments, information that on first thought should not be available.

Woodman and Guillen, for instance, using above relations, assuming that the

original shears are marginally unstable, and from the measured values of the

spectral width, deduced that the turbulent layers in the stratosphere were of the

order of 50 meters, even though the resolution of the instrument was 5 km. Sate

and Woodman have later validated this arguments by measuring <u'=> and I.,

with the 150 meter resolution 430 MHz radar at Arecibo.

Richardson's criteria tells us that turbulence is energetically possible, but it

does not tell us how it comes about. We need an unstable process that would

make small disturbances grow and eventually brake down into the non-linear

regime that we call turbulence. One such a process is the Kelvin-Helmholtz

instability. The process is analogous to the way wind, blowing on the ocean

surface, peaks a particular wave, that which has a phase velocity equal to the



126

wind velocity, and make it grow until it breaks down. In the atmosphere shear

effectively produces a wind that blows with respect to the denser fluid underneath,

it peaks a particular gravity (buoyancy) wave, and makes it grow until eventually

brake into a billow and this in turn into smaller scale turbulence. The phenomena

is confined to the layers within which the process is energetically possible, i.e.
were Richardson's criteria is satisfied.

Turbulence is also possible without shear, if the numerator in equation (12),

that is if the gradient in potential temperature, is also zero or negative. We then

say that the atmosphere is statically unstable. We effectively have a heavier fluid

resting on top of a lighter one, a condition that is definitely unstable (Raleigh-

Taylor instability).

Both processes mentioned above, Kelvin-Helmholtz and Raleigh-Taylor

instabilies, can come about in the atmosphere as a consequence of large

amplitude gravity and lower frequency waves in the atmosphere. These waves

have a velocity field which is transverse to their k . Their k-vector is almost

vertical. It is then possible, as the waves grow in amplitude with height, to

produce almost horizontal shears that satisfy Richardson's criteria. The slight tilt of

the velocity field of the wave is also capable to lift regions of higher (potential)

density above regions of lower density, making them statically unstable.

An often quoted and very important conclusion that has come out of

turbulence theory is Kolgomorov's wave-number spectrum. It says that within a

given range of wave-number values the wave-number power spectra is of the

form

k=_(k) = k-_ (13)

We have place the k= factor on the left hand side to conform with the -5/3 power

law which is often quoted in the literature. The difference comes from the use of

what is referred as the one dimensional ( in three dimensions ) spectrum, in

which the Fouder transformation from r-space to k-space is performed by

transforming in one dimension integrating along the magnitude of r.

The range within which this law is valid is called the "inertial subrange'.

The relationship can be derived on pure dimensional arguments with the

assumption that for scales smaller than the primary energy containing scales, but

large enough so that molecular viscosity does not play a role, there should be a

dimensionless relationship between eddies of different sizes and that they should
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be isotropic. The law brakes down at dimensions close to the largest eddy

possible, and on the other end, at small dimensions where the inertial forces are

comparable to the ones produced by molecular viscosity , i.e. at scales where

molecular viscosity becomes important in extracting energy ( into thermal) from

the eddies. Within the inertial subrange, kinetic energy is cascaded from the

larger to the neighboring smaller eddies.

Kolmogorov's law is isotropic and valid for non stratified media. In the case

of the gravity stratified atmosphere, Kolgomorov's law is valid for the smaller

scales, where potential energy is smaller than kinetic energy. On the larger scale

it fails before it reaches the largest scales. The region between the "outer scale "

and the inertial subrange, where potential energy is significant is referred to as

the "buoyancy subrange". Not only the -5/3 power law fails; isotropy is no longer

true, gravity, and the unstable phenomena responsible for the larger eddies, have

preferred directions which spoil the isotropic symmetry.

The turbulent state of a fluid is often specified by the outer scale, i.e. the

size of the largest eddies, and the energy dissipation rate, E (e.g. Hocking,1983). It

can also be specified by the outer scale and the velocity variance, the second

being also related to the energy levels involved. Both are theoretically related

through the molecular viscosity of the fluid. We prefer the velocity variance for

MST radar work, since it involves a radar measurable quantity, as compared to a

theoretically derived £, which involves certain assumptions.

For further reading see Batchelor (t953), Tennekes and Lumley(1972),

Bolgiano(l%8) and Tatarsky

Relationship between radar si nals and atmospheric medium statistics

_statistics

The usefulness of a MST radar is based on the close relationship there is

between the statistics of the signal received and the statistical properties of the

atmosphere. It is our intention to show and discuss this relationship, its

implications and limitations. Before we get into this task, let us first review the

statistical nature of the signals received and ways to characterize their properties.

The experimental setup of an atmospheric radar has been covered by the

previous lectures (See also Balsley and Gage,1980). Regardless of the possible

variations of radar systems, it is convenient to think of the signals as a two
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dimensional process, but in which both dimensions have units of time. The idea

is depicted in figure 3. The figure shows radar signal returns for a sequence of

identical pulses. We are showing the signals after filtering and decoding, so we

can still talk about identical pulses even if we have used a complementary pulse

scheme. In one of the dimensions we have the delay time after the time of pulse

transmission. On the other dimension, we have the time of pulse transmission.

The process is discrete in this dimension. We can then represent the signal

received as s(t,t'), where t stands for the (discrete) time at which the pulse was

transmitted, and t' the delay time after the pulse, t' is continuous as an analogue

output of the receiver, but in practice it is also discretized by the sampling and

digital processing. As before we wilt be careless in differentiating the continuous

vs. the discrete representation of signals.

It is convenient to make a change of variables and replace t' by 21Vc,

where h stands for the radar range defined by the delay t', considering a pulse

propagation at he speed of light, c. We can then write s(t,h) to describe the

signal, dropping the 2/c factor from the notation for convenience, in this way we

get around the disturbing dependence on two times as independent variables.

The radar signal is intrinsically a non-stationary time process as a

consequence of the non-homogeneous nature of the atmosphere. By writing it In

the form s(t,h) we have convened it into multiple (practically) stationary processes

in time t, one for each range of interest. We can change our notation once more

and write sh(t) to stress the parametric nature of h. We can now think of h as a

label, labeling parallel processes, one for each altitude.

We know how to characterize a random stationary process: by its

autocorrelation function. If the echoes come from a (practically) homogeneous

turbulence, we can further argue using the limit theorem (sum of many

independent contributors) that the process is Gaussian, in which case all the

information we can extract from the process is in its autocorrelation function.

Gaussian or not, Ch(_) is defined as

C.(x) = E[s,(t)s,(t+,¢)] (14)

A good estimator of Ch is <s,(t)sh(t-_)>nwhere the average has been evaluated by

taking n pairs of sample points. Altematively, as we have already seen, we can

characterize the signals by its frequency power spectrum, Fh((o), given by the

Fourier transform of Ch(t). Good estimates of Fh(0O)can be obtained from
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Figure 3 - Two dimensional schematic representation of the radar signals.

t is the time of each radar pulse and t" the radar range delay. The

process of interest is S,(t), i.e. the sampled signal at a given range,

h, as a function of the time t of pulse transmission.
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discrete Fourier transforms of C,(_) or directly from the sequence by the

techniques that will be described later in the lectures.
So far we have considered in the introduction and the discussions above

that the radar signals received are real. Indeed they are. We live in a real world.

On the other hand, for practical reasons, the signals which originally have a

frequency almost equal to the transmitter frequency are converted to base band.

To preserve all of the information contained in the original signal we need two

converted signals, The so call Q and I components ( see lecture on radar

hardware). It can be shown (e.g. Woodman and Kohl, 1976) that if we form a

complex signal with the Q and I component as real and imaginary component,

everything we have say is valid, if we replace s(t)s(t+_) by s(t)s'(t+_). We can

recover the statistics of the signals before baseband conversion by multiplying the

correlation function by exp(j_t), where _ is the transmitter frequency, and then

taking the real part. Any complex phase can then be interpreted as a real phase

with respect to the transmitter frequency. In particular a Doppler shift in the

received signal is manifested as a complex phase of the form _t in the

converted signal, and as a complex phase of the form r._ in the correlation
function.

in the frequency domain, that is in the corresponding frequency power spectra,

the effects are simpler , a spectrum of the form F(e_o) is converted to a

spectrum of the form F(_). A Doppler shift shows as a displacement in both.

A__.Reneralrelationship

In the appendix we have derived a very general relationship between the

statistical of a radar signal and the statistics of the fluctuations in density ( we

could have used the dielectric properties, the temperature, electron density or any

other relevant linearly related quantity) of a scattering medium. There, we take the

approach of considering the most general conditions the least amount of

approximations. Particular cases allow further approximations and specific

expressions that one can use in practice to estimate medium parameters or to

discuss instrumental effects. It has the advantage of going from the most general

to the particular keeping good track of the approximations involved and their

limitingimplications. Furthermore, it does not take any additional conceptual effort

to derive the most general expression, namely
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=f t,C(% t) d3xd3r dt'dz' X( ;t ,x) z'(t-wc;t'+c',x+r) p(r,z'.,x) (15)

Cumbersome as it looks, because of the variety of arguments, the expression

represents linear operations involving only two functions of easy interpretation, Z

and p. p is the space- time autocorrelation function of the fluctuations

responsible for the scattering, it characterizes the medium and depends only on

the properties and dynamics of the medium. The function x(t; t',x) may be called

the *instrument function'. It can be interpreted as the output of the instrument as

a function of time as a consequence of a given arbitrary transmitter output shape

(pulsed or continuous) having placed a point scatterer at point x in space, for an

instant, at time t'. It is analogous to the impulse response of a system, although

here the impulse is in the system characteristics: the scattering density.

The instrument function , X, includes the pulse shape of the transmitter,

any (amplitude, phase or frequency modulation) coding and decoding, match

filtering , the geometry of the experiment, the transmitting and receiving

characteristics of the antennas and the propagation properties of the medium,

including any refraction if necessary. The determination of p is a statistical

problem related to the physics of the medium, the determination of X is an

electronics and electromagnetics problem. As far as the characteristic of the

medium, it includes non homogeneous and anisotropic cases. It is also valid for

ionospheric radars including the incoherent scatter technique.

Although not discussed here or in the appendix, the approach can be

extended easily to the case the system has two outputs, like in the case of a

radar interferometer. We just replace the product of identical X's by the product

X,_b"where the a and b label stand for the outputs of the two antennas, or the

two frequencies in a frequency domain interferometer (Kudeki and Stits, ]987)

At the appendix we have derived expressions which include explicitly the

.transmitter pulse shape, the receiver filter and decoding impulse response, and

the antenna pattern. In order to perform some of the integrations and make

discussion possible, we have also assumed that the scattering volume, defined by

the antenna patterns and the effective pulse width is larger than the characteristic

sizes of the fluctuations, although this assumption can be relaxed if necessary. It

is possible to reduce the complexity of the expressions further, taking

approximations which are valid for specific cases.
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The MST case

In the case of MST or clear-air radars it is well justified to assume that

the characteristic time of the medium is much larger than that of the pulse and

matching filter. In that case we can use equation A.15 and write (with a slight

change in notation):

C(_,h) = f d2sdh' K=(s,h') t_(k,(s),_;s,h') p(h-h')p'(h-h'-_) (16)

It differs from the appendix notation in the use of h' for the range (delay) variable

of integration and h for the "range" sampling time. We have also conveniently

selected length units such that c/2 ( half the speed of light) is unity. This allows

us to use h and h' for a spatial as well as a time variable. The coordinate

system of integration is defined by surfaces of equal delay and an arbitrary two

dimensional coordinate, s, in the transverse direction, k is in the direction of h.

The directional dependance of _ on s is shown explicitly. This dependance is

important in the case of anisotropic turbulence and will be responsible for aspect

sensitive effects. The possibility of non-homogeneous turbulence is also shown

explicitly in the dependance of $ on h and s. This is important since it is known

that turbulence occurs in layers thinner than the usual range resolution of the

radar. The formula is valid for mono-static and bi-static radars, and K(s,h) stand

for the product of the transmitter and receiver antenna weighing patterns. The

dependance of K in h is usually slow ( mainly the inverse of range squared ) and

can be taken out of the integral.

It is important to stress the fact that it, is not the variable vector k; it is a

constant vector defined by the vector difference of the incident and the scattered
wave number vectors which characterize the incident and scattered

electromagnetic wave which leaves the transmitter and arrives to the receiving

antenna, respectively. In the case of a. backscatter radar it has a wave number

twice the corresponding wave number of the illuminating wave, and the same
direction.

If we crosscorrelate, as we should, only samples which correspond to the

same range, then we have an expression for the auto correlation of the time

stationary process s,(t) we defined above. This is equivalent to restrictingthe time

of the second sample to be at even multiples of the pulse repetition period. In

which case, since the filtered pulse function p(t) is periodic, i.e. since IXt)==
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p(t+nT), we can replace the product of displaced p's above by Ip(h-h')l=.

If we further assume that the medium is homogeneous in the transverse

direction s, we get a simpler but yet very general expression for C,(_):

C.(_) = f d=s K=(s) f dh' _(k,(s),_; h') Ip(h-h')r_ (17)

Before we continue with the discussion of this equation it is convenient to

make one further approximation, discuss the results and then come back to this

more general expression.

If we further assume that we have a homogeneous atmosphere in all

directions, and that the antenna has a beamwidth much narrower than the

characteristic angular width of any aspect sensitivitywhich ¢(k,(s),t) may present,

we can take ¢ out of the integral and write

or

C(_) = B _(k,,_) (18)

F((o) = B (l)(k,,00). (19)

The success of radars to study the atmosphere is based on these simple

formulae. Even in the case that the approximations behind them are not quite

valid, its discussion allows us a first order approximation of the results. We shall

discuss the significance of this equation first, and then remove some of the

approximations that make it valid.

We will discuss only the implications of the terms _ or (I) on above

equations. Since both expressions are interrelated, we will most of the time limit

our discussions to the time domain expression, i.e equation (18) and extend it to

the frequency domain (equation (19)) when desirable. We will not discuss the

proportionality term, B, since that is equivalent to a discussion of the radar

equation, which we have already seen in the previous lectures.

The first conclusion we can derive from these expressions is that the

amplitude and dynamics of the radar signal depends linearly on the amplitude and

dynamics of only one Fourier component of the density fluctuations of the

medium, that which has a wave-vector equal in amplitude and direction to twice
(backscatter case )the wave-vect0r of the probing electromagnetic wave. in

terms of wavelengths, the radar is sensitive only to fluctuations with a wave

length half the wavelength of the probing wave and a direction equal to the line



134

of sight. The radar effectively filters out very sharply all the spatial Fourier

components which are not equal to k,. This wave component is still a random

process. Its dynamics is characterized by its temporal correlation function, $(k,,_).

The signal received has the same dynamics as this particular wave component.

The "power" , i.e. the amplitude squared averaged, of the particular wave

component of the density fluctuations the radar is sensitive to, is given by $(k.,0).

Therefore the power of the radar signal is proportional to the "power" of the same

spatial wave component. Furthermore, if we assume that the k-spectrum follows

a Kolmogorov law, we can indirectly infer the power density at other wavelengths.

If the medium is inmoble with respect to a frame of reference, in this frame

of reference we can show that _(k,_) is real. This is a consequence of the

invariance of p(r, _) under an interchange of r with -r for any t. If it were not

invariant we would violate our inmoble assumption since there would be

dynamically a preferred direction. An observer moving with respect to this

reference at velocity v would measure instead a correlation function of the form

p(r-v_, _), as a consequence of a transformation x' = x-vt in the defining equation

(6) for p. Using the displacement theorem of Fourier transform pairs, we derive a

k-spectrum of the form ¢(k, t)exp(-jk..w). Replacing this spectral form in

equation (18), and remembering that ¢(k,, '_) is real,we conclude that the phase

slope of the signal correlation is a measure of the projected velocity of the

medium with respect to the radar. The projection is along k.. In terms of the

frequency power spectrum F,(o)), again using the displacement theorem, we get a

new expression, F,((o-o_), where coois, not surprising,the Doppler frequency,

o_ = k,.v = (vJ2c)O_o. (20)

Our next step is to show that the characteristic time of the signal

correlation is determined by the variance, <w'z>, of the turbulent velocity. This is

better shown in the frequency domain. If the scattering volume is larger than the

largest eddies, we are sure to have a good sample of all possible velocities within

the volume. Normally the eddies are much larger than the wavelength of the

fluctuations the radar is sensitive to. We can then divide the scattering volume

into many scattering sub-volumes. The signal received would be equal to the
sum of each of the contributions of these sub-volumes, each of which would

impose a Doppler shift proportional to its averaged projected velocity w" . This

projected velocity would not differ much from a corresponding local w', since we
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know from turbulence theory that most of the energy is in the largest scale

eddies. Therefore the power frequency distribution ( spectrum) of the

backscattered signals is going to be distributed in the same way as the probability

distribution of w' . Its second moment, o_, would be proportional to the variance

of the velocity <w'Z>, with the same constant of proportionality as the one which

relates the velocity to the Doppler shift, but squared, namely

@ = ¢Oo'<W%/4c'. (2D

Furthermore, we have mentioned before that from experimental results as

well as from limit theorem arguments, we expect the random turbulent velocities

to be normally distributed, therefore, we also expect the frequency power

spectrum of the radar signals to be distributed likewise.

A normal frequency power spectrum is defined by three parameters: its

area( total power), displacement and width; or, alternatively, by its three first

moments. It transforms to an autocorrelation function which is also normal,

although complex. The three parameters transform into : the amplitude , phase

slope and width of the autocorrelation function, respectively. That is all the

statistical information either one of them contains, and that is all we should look

for in this case. On the other hand we have seen that they are related to very

important parameters of the medium. In fact, the relation and importance holds

even if normality is not assumed.

Let us come back to the more general equation, (17). The whole

expression can be taken as a weighted averages of $, averaged over all ranges

weighted by the filtered pulse shape squared, and over all angles weighted by the

antenna pattern. In the case of a bi-static arrangement, the averages are taken

over surfaces of equal delay ("range') and over appropriate transverse

coordinates ("angle').

The pulse function is non-zero for values close to h-h'--O , and a depth

equal to its width after convolving it with the filter function (similar shape for

matched conditions), this means that the range integral is effectively sampling

at h'=h, averaging neighboring values within approximately a pulse width.

Similarly, the antenna weighing function is non-zero for values close to the

axis of the beams, and a width given by the beamwidth of the antennas.

If the dependance of $ on s or h is relatively slow as compared to the

width of the weighing functions p2 and K=, an average value of $, representative
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of the center point of the sampled scattering volume at range h and center angle

of the beam patterns s== s., can be taken out of the integral. The integrand is

reduced to the two weighing functions, which integrate to a volume V, as large as

the non zero regions of p_ and Ks, multiplied by the proportionality constants

imbedded in them. The result,

C,(_) = b V _(k,, _; h), (22)

is a proportional expresion as the one in (18) and (19), which we have already

discussed. We have replaced k,(So) by k,, where I% stands for the

corresponding one at the center of the beam. The only difference being the

explicit linear dependance on the volume, V, and the averaging nature of the

integral operation

An important use of equation (17) is in the evaluation and discussion of

broadening of the spectrum, F(¢o), as a consequence of finite beamwidth and wind

shear. The evaluation should be done by actually using the equation, and a

model of the medium characteristics and the radar system in the integrand. But, it

is possible to get a feeling of how the broadening comes about by breaking the

integral into the sum of integrals over smaller volumes sufficiently small for

equation 08) to be valid. Each subvolume will contribute to the spectrum with

comparably shaped spectra but with different Doppler shift, k,.v. The Doppler

shifts would be different either because k, varies in direction within the beamwidth

(beam broadening) or because v varies (shear broadening). The resultant

spectrum would be significally wider if these shifts are larger than the ones

produced by the random turbulent velocities. ( See Hocking, 1983, for further

discussions).

Notice here that it is possible for non isotropic turbulence to have a

dependent on s through its dependance on the direction of k, , that is an aspect

sensitivity. If the aspect sensitivity is wider than the beamwidth, the radar would

be able to resolve it and actually measure the angular dependance, provided of

course that the beam is steerable. If the aspect sensitivity is sharper than the

beam pattern, then the weighing in the integrand will be performed by the aspect

sensitivity function , and the statistics of the echoes will be mainly that

corresponding to the most favored aspect angle. The contributing volume will

also be correspondingly smaller.(See Doviak and Zmic, 1984, for further

discussions).
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Something similar would happen if the h dependance of t_ is smaller than

the pulse width. The most important consequence being that the volume would

be smaller than that defined by the pulse. Thus, the actual strength of turbulence,

¢(k), would be underestimated if the h dependance of $ is not taken into account.

Partial reflection.

So far we have considered only radar echoes that have been produced by

random turbulent-produced fluctuations in refractive index, it is possible to have

in the atmosphere stratified structure sufficiently large in the horizontal extent as

to be considered deterministic for all practical purposes. In fact, the aspect

sensitivity that has been measured is so sharp that has let some researchers (

RSttger and Uu,]978 ; Fukao et al,]gTg; Gage and Green 1978 ) to postulate that

the echoes are produced by partial reflection from stratified gradients. In this

case is more convenient to talk, borrowing from optics, about the reflectivity of the

structure, R. It is a coefficient, defined by the ratio of the intensity of the reflected

over the incident electromagnetic wave, incident on the structure. A formula
often used in the literature to evaluate R is

y_L,= _exp(-Jk,z) dz.R= -_-

Recently, Woodman and Chu, 1988, have shown that the limits, I./2, if they fall at

points where the integrand has not gone to zero on its own, can introduce

artificial discontinuities in the first derivative which overestimate the reflectivity by

many orders of magnitude. Nevertheless, partial reflection is possible if step like

structure of a fraction of a degree Kelvin exist within a length scale of a meter or

so. The existence or not of such a discontinuous structure would have to be

established with an independent technique. The aspect sensitivity observed with

radars can also be explained In terms of anisotropic turbulence at the edges of

the turbulent layers observed with the same technique (Woodman and Chu, 1988).

Charactedstiq,s_intsrfe rence

Radar echo signals are always contaminated, in variable degrees, with sky

and receiver noise and echoes from undesirable targets, like mountains, other

ground structures, ocean waves, etc.. The latter is referred as clutter. In order to
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properly interpret the desired signals, and be able to discriminate between them

and noise or clutter, we need to know the spectral characteristics of the latter as

well.

Sky and receiver noise, after passing through the receiver, has a

bandwidth determined by the receiver filter. The filter in turn is normally matched

to the transmitter pulse width, or Baud width if coded. The pulse width is a small

fraction of the pulse repetition period, which also determines the sample time of

the sequence Sh(t). Therefore, at this sampling rate, the noise samples are

independent. They are also statistically independent with respect to the signal.

Hence, the noise contribution to the autocorrelation function of the received

signals is a Dirac function centered at the origin. Its contribution to the frequency

power spectrum is a flat threshold. It behaves, then as white noise.

The characteristics of ground clutter are the opposite to those of noise.

They are very narrow in the frequency domain and wide in the time domain. To

first approximation clutter shows as an spectral line in the frequency domain,

centered at zero frequency, since it comes from rigid structures with no relative

velocity with respect to the radar. At low VHF frequencies, this is practically the

case. At UHF frequencies, the reported clutter characteristics (Sato and

Woodman, 1981) have two components, an spectral component accompanied by a

weaker narrow, but finite, width component both centered at zero frequency. The

spectral line comes as in the VHF case from the rigid ground structures, the

wider component is believed to come from wind induced motion of tree branches

or from phase modulation of the spectral component induced by changes in the

effective phase path length between the radar and the target. Both are possible.

Changes in the width of this component with different surface wind conditions

support them both. Fortunately, except under very windy conditions, the wider

component is still a few to several times narrower that the width of the

atmospheric echoes and one can discriminate against them (Sato and Woodman,

1981). The task is made easier by its confinement to the center of the spectrum.

Under windy conditions, specially when one is interested in the small vertical

component, ground clutter is a problem at UHF frequencies.

For those radars near the ocean or large lakes, ocean clutter is a source

of interference. It can compete in strength with the atmospheric echoes, specially

at the higher ranges. Ocean clutter comes from wavelets on the surface with a

wave length equal to half the wavelength of radar. It is Doppler shifted by a

frequency corresponding to the phase velocity of the wavelet. This velocities are
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of the order of a few meters per second, and hence comparable to the

atmospheric velocities we are interested in. This should not surprise us, since

the wavelets are exited by matching velocity components the surface wind speed.

To make matters worse, ocean clutter echoes have spectral widths which are also

comparable to that of the desired echoes (Sato and Woodman, 1982b). Still it is

possible to discriminate against them, taking advantage of the predictable

frequency shift and their constancy - in amplitude and frequency- as a function

of range and time. The problem being limited to those altitudes where the wind

profile crosses the value correspondingto the velocity of the wavelets, and only in

the case its strength is comparable or weaker to the interference.
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APPENDIX

Scattering of EM Waves from Dielectric Density Fluctuations*

R. F. Woodman
Arecibo Observatory, Arecibo, PR

Radars are used for remote probing of the upper atmosphere. Monostatic and bistatic
configurations have been used. The echoes are obtained from the scattering of the illuminating
wave by fluctuations in the dielectric properties of the medium under study.

The fluctuations in the local dielectric constant of a medium are direct consequences of
fluctuations in the density of the medium or, more properly, on the density of that component or
components in the medium responsible for its dielectric behavior, e.g., electron density in an
ionized gas, "air" density and water vapor in the low atmosphere, etc.

In the case the medium is in thermodynamic equilibrium, the fluctuations are reduced to a
minimum (thermal level). In such a case, and for an ionized plasma, we refer to the technique as
incoherent scatter. These fluctuations are never at zero level due to the discrete nature of matter
(Summations of delta functions will always produce fluctuations.)

Density fluctuations are statistically characterized by the density space-time correlation
function p(r, z, x) defined as

p( r,%; x) - < n(x,t) n(x + r, t + _) > (1)

where n(x,0 is the microscopic random density of the medium at position x in space and time t. In
(spatially_ homogeneous medium p is independent of x and p(r,%) = p(r,% x).

Hagfors has treated the problem of how i'o find _(x,%) for a_ ionized medium in
thermodynamic equilibrium (or quasi-thermodynamic for the case T e # Ti). Farley has described
the different techniques for obtaining estimates of p(r, %; x) from the scatter echoes.

We shall develop here the functional relgtions"hip that exists between the statistical
characterization of the signal received in a radar experiment and the fluctuations in the medium
characterized by p(r, %; x). The fluctuations need not be at the thermal level, so we are not limited
to the incoherent st"atter_roblem. We should point outthat the usefulness of large radars for the
study of the upper atmosphere is not limited to incoherent scatter. Proof of which is found in the
large number of papers produced by the Jicamarca Observatory by studying backscatter echoes
from E- and F-region irregularities and from turbulent fluctuations in the neutral atmosphere. In
fact, some smaller radars are built (STARE, SOUSY and the TS radars) which depend on the
enhanced reflectivity produced either by instabilities or turbulence. This could be the case in
EISCAT when observing auroral phenomena or the effects of artificial heating. It will also be the
case when studying neutral dynamics using backscatter signals from turbulent fluctuations.

Said functional relationships can be found in the literatm_ but it is usually derived from
very simplified conditions with assumptions which are not necessarily valid. The derivation is
usually heuristic and in many cases difficult to assess the range of validity of the derived
expressions. Such approach is, of course, useful for didactic purposes and when the purpose of
"the paper is on other aspects of the problem. Derived expressions in the literature are usually
derived for a specific technique (out of the many described here by Farle.y) and for specific
conditions (e.g., homogeneous media, continuous illumination, slowly varying echoes, narrow
pulses, etc.). We shall derive here the functional relationship between the statistical properues ot
the echoes and the statistical properties of the medium under very general conditions.

*Lecture presented at the M.P.I. EISCAT School, January 1979, Oberstdorf, W. Germany
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We shall consider an experimental configuration as depicted in Figure 1. The medium
under study is illuminated by an EM wave of frequency w o, modulated by an arbitrary complex
signal p(t), scattered EM waves are received at a different location (or at same as a particular case),
coherently detected, properly filtered and decoded (if necessary). We are interested in evaluating
the complex autocorrelation of the signal received, O(t), i.e.,

C(x,t) ---< O(t) O* (t + '_) > (2)

in terms of the space and time density correlation of the medium.
The signal O(t) is a random process, usually nonstationary, is fully characterized by its time

autocorrelation function C('Lt). The dependence on t can normally be associated with a given
range, h, corresponding to the delay.

We assume: (1) that there is only primary scattering (first Born approximation valid), i.e.,
the medium is transparent, the illuminating field at a point x within the medium is due to the
primary illuminating field and the scattered fields at x are neglf'_ble; (2) the system is linear, i.e., if
Ol(t) is received for Pl(t) and 02(0 for 02(0- The"0tOt(t) + [502(0 is received for an excitation
_tpl(t) + 5 P2(t). The linearity of the propagation in the medium is guaranteed by the linearity of
Maxwell equations.

The linearity of the system allows us to evaluate the output signal as the linear
superposition of the contributions of each differential volume, d3x with density n(x,t). This
differential contribution can be evaluated in terms of the linear operators depicted in FigaTme2. Here
we have modeled the propagation of the transmitter to the scattering point by a delay operator with
delay Tl(X) and an amplitude factor Kl(X) which represent the effect of antenna gain and other
system parameters. The scattered signal ts proportional to the local instantaneous (random) density
n(x,t) of the medium times the volume d3x. The dielectric properties of the medium, the receiver,
antenna, and other propagation properties-are contained in a constant gain (in time) K2(x). There is
a delay block with delay T2(x), a detector and a filter before we finally get our output from the
differential contribution from-n(x,t). The filter is characterized by the complex input response h(t)
and includes any decoding scheffte. Decoding is a convolution operation and can be considered as
part of the filter.

The evaluation oft he delay functions Tl(X), T2(x) and the constant terms Kl(X), K2(x)
does not concern us here and are assumed to Be-known.- The output of the system can then be
written as

/.

o(t,x)d3x = d3x J dt" K(x) p(t' - T(x)) e-i WoT(X)n(x,t' - T2(x))h(t - t') (3)

where we have already operated on the "signal" with the delay operators 6(t -Ti(x) and
G(t - T2(x)). Here we have used T(x) = Tl(X) + T2(x) for the total delay and-K(x) = Kl(X) •
K2(x ). The total signal output is then- - ~

O(t) = I d3x o(t,x) (4)

and the autocorrelation, C(x,t) = < O(00*(t + x) >, can then be written as:
l"

C('c,t) = J d3x d3x'dt'dt"K(x) K(x') p(t'--T(x)) p*(t'--T(x)e -i wofr(x_)- T(x'))

•h(t - t') h(t + x - t") p[x' - x, t" - t" - (T2(x) - T2(x')); x] (5)

It is convenient to write this expression in terms of variables

r --x'-x

x" = t" - t"
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f
C(x.t) = J d3x d3r dt" d%"K(x) K*(x + r) p(t' - T(x )) p*(t" + x" - T(x + r))

o e-iwo(T(x.)- T(x + r)) h(t - t') h*(t + %- t' - '() p[r,x" - (T2(x) - T 2 (x + r)); x]
.... (_;)

This expression is simplified considerably if we take advantage of the fact that in most cases the
characteristic length of the density correlation function, rc, (equal to the Debye length in the I.S.
case) is much smaller than the characteristic length of K(x) and the characteristic length, ct v
corresponding to the width of the pulse p(t). This allows us t-oreplace K(x + r) by K(x) and p(t'-'
T(x + r)) by p(t - T(x)) in the integrand with no appreciable effect on the ffiteg_al. ~

Also, the difference in propagation time T2(x ) - T2(x + r) is of the order of rJc for points
within a correlated volume. This is much smaller-than the-characteristic time of the decay of the
correlation function unless one is dealing with relativistic plasma. Therefore we can ignore this
term in the time argument of the correlation function. In addition, the oscillatory nature of the
exponential, with a wavelength comparable to the wavelength of the probing wave, makes the
integrand unsensitive to any possible long scale structure of the correlation function across the
surfaces of constant T.

Furthermore, the almost linear behavior of T(x + r) on r for l r [ < re allows us to linearly
expand T(x + r) in the exponent around x and write: - -

woT(x + r) = w o T(x) + WoV r T(x) • r = wo T(x) + k(x) * r (7)

where k(x) = kl(x) - k2(x), and kl(x) and k2(x) are the local wave number of the incident and
scatter_ wave,-re_peeff_eTy. With-thi"s appmx-ir_ation we can write:

t"

C(x,t) = J d3x dt'd'g K2(x) p(t' - T(x)) p*(t" + _ - T(x))

• h(t - t') h*(t + x - t'- x') _(k(x), %';x) (8)

where p = (_, x; x) is the spatial Fourier transform of p(r, x; x) defined byg

Notice that as far as r is concerned, x can be considered as a constant parameter. Also notice that
the output of the exp_-irnent depends-only on the Fourier component evaluated at a particular set of
wave numbers k(x), which for most cases is a constant. It is equal to 2k I in the backscatter case.
Equation (8) is_ general expression we are after, it involves only twGbasic assumptions and one
approximation regarding the length scale of p(r). It can be used as the starting point for simpler
expressions appficable to the particular cases.

Next we consider a few particular cases as illustrative examples.

Case 1. Continuous excitation.

In the case of a cw bistatic experiment, e.g., the French incoherent scatter radar, we have
p(t) = a, where a is a constant.

In such a case the output of the experiment is time stationary and the correlation function,
C(x) = C(%,t), is given by

I" i"

= J J <  10>
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where the second integral is the usual convolution of the correlation function of the input signal to a
filter by the autocorrelation function, _hll(x) of the filter characteristic. The spatial integral
represents a weighted average of the conmbutions of each differential volume, weighted by the
beam patterns of the antenna (and the 1/R2 dependence). For homogeneous media and constant
k(x) = k, the spatial integral is independent of p and defines a volume, V, and we have

•C(x) = aZK2 V p<k,x) %h(z - "t) d'((11)

The above equations, if expressed in the frequency domain, take an even simpler form where the
convolution integral is transformed to a product of frequency functions.

Case 2. Filter time scale smaller than characteristic time of p.

In this case the integrand is different from zero for small values of the argument of h(.),
i.e.,when

t _ t s

'c=x'+ t'-t

Thus, p(k(x), x'; x) can be taken out of the x' integral evaluated at z" = "r. We can then write (8) as

-IC(_,t) -- d3x K2(x) _(k(x), "c;x) _(t-T(5)) _*(t + _ -T(x)) (12)

where _ is defined as
/,

_(t) = J dt'p(t') h(t - t') (13)

that is thej)ulse shape passed through the filter or decoder. In optimum designs h(t) is identical to
p(t), and _(t) is then the autocorrelation of the pulse shape. In multiple pulse experiments the f'dter
is identical to a pulse element of the sequence and _(t) is a sequence of autocorrelated pulses.

Surface of constant delay, T = T(x), can be used as one of the variables of integration
(e.g., range in a backscatter case with plane wave fronts) and a suitable set of two transverse
coordinates, s, for the remaining two. We can then write:

d3x = d2s cdT (14)

where c is the local phase velocity of light taken to be a constant for simplicity, d2s is a surface
differential. Equation (2) then takes the form

C('_,t) = c f d2s f dT K2(s,T) ¢}(k(x), 't; s,T) p(t - T) P-*(t - T + "0 (15)

Case 3. Backscattering from a (quasi-) homogeneous andisotropic medium.

This case illustrates the effect of decoding and filtering on the dependence of the
autocorrelation function. The assumptions involved allow us to replace _(k(x), z'; x) by ¢5(k, z')
and to take it out of the spatial integral. For quasi-homogeneous cases we Can-take _k, z; x)-with
the value it has at the center of the volume, which corresponds to the particular delay i"of the
measurement. Therefore we will write Pt(k,x') to extend the generality.

We can also perform the spatial integral in terms of the variables s and T_ Only K2(x) is a
function ofs and we can perform the integral with respect to this variable. If K2 is a factor_vhich
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groups alt the dimensional factors in K2(x) then the spatial integral gives us K2A(T), where A(T) is
an equivalent area defined by the s dependence of the beam pattern. On most cases of interest A(T)
is a slowly varying function of TTslower than the pulse length and can be taken out of the integral
evaluated at the sampling delay t. Considering the above we write equation (8) as

C(x't) = CK2A(t)I d'_'dt'dT _t_' x') P(t' _ T) P " (tl + x' - T) h(t- t') h(t + x- x'- t')f

= CK2A(t) J dx'0t(k,x') Jdt' h(t - t ) h*(t - t + x - '() J dT p(t - T) p*(t' + x" - T)
(16)

or

C(%t) = CK2A(t) f dx" _t(k, "_')Opp ('O _bhh(X- _') (17)

where Opp (z) is the autocorrelation function of the pulse shape and Ohh (Z) the autocorrelation
function of the filter and decoding system.

Illustrative Examples

In order to gain a better understanding of the significance of the formulas derived for cases
2 and 3, we have constructed Figures 3 and 4, respectively, corresponding to two often used pulse
schemes. Case 1 does not need an illustration since in this case the specmam of the signal received
is just the product of the spectrum of the medium with the systems filter characteristics.

Figure 3 depicts the different shapes of the functions involved for a double-pulse
experiment, in a backscatter mode, in which two narrow pulses are sent, Xs apart. In this case the
experiment provides information on the correlation function 6t(k x'), at only one delay, x = xs,
corresponding to the pulse separation. In practice the correladoff function is evaluated only at this
delay. To obtain the value of the correlation function at other delays, another pair of pulses is sent
with the proper spacing.

Notice that C(x,t) is different from zero only in the vicinity of x s, the useful part, and in the
vicinity of'r = 0 corresponding to a power measurement. Such power measurement is not useful
since it contains not only the contribution from the desired height but also the "self-clutter"
contribution from t - Xs, as illustrated in the two-dimensional plot of _(t - T) l_*(t - T + x).

Multiple pulse schemes can be illustrated in a similar fashion, the main difference being that
several correlation delays can be estimated in a single sequence and that the self-clutter is larger and
coming from several different altitudes.

Figure 4 illustrates the case in which a long pulse (as compared to the medium correlation
times) is sent. The receiver impulse response is narrow and considered square for the sake of
simplicity. Two effects are clear from the picture, the medium correlation function is multiplied by
a triangular function, _tm(x), and the result convolved with a narrower function, 0hla(x), given by
the self-convolution of file filter input response.
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